Линейная и объемная скорость кровотока: что это такое, от чего она зависит

Кровь движется по кровеносным сосудам благодаря периодическим сокращениям сердца. Сердце и сосуды составляют сердечно-сосудистую систему.

Движение крови по кровеносным сосудам подчиняется законам гемодинамики, являющейся частью гидродинамики(раздел физики)- науки о движении жидкостей по трубкам.

Движущей силой кровотока является энергия, задаваемая сердцем потоку крови в сосудах, и градиент давления -разница давлений между различными отделами сосудистого русла. 

Давление в сосудах создаётся работой сердца. Кровь течёт из области высокого давления в область низкого.

При движении ей приходится преодолевать сопротивление, создаваемое, во-первых, трением частиц крови друг о другу, во-вторых, трением частиц о стенки сосуда.

Особенно велико это сопротивление в артериолах и прекапиллярах. Сопротивление зависит от длины сосуда, вязкости крови и радиуса сосуда.  

  • Показатели движения крови по сосудам:
  • 9) объёмная скорость кровотока;
  • 10) линейная скорость кровотока;
  • 11) время круговорота крови;
  • 12) артериальной давление.

Важным показателем движения крови по сосудам является (см. библ.стр.128) объёмная скорость кровотока (Q)-это объём крови протекающей через всю кровеностную систему за 1 минуту.  (млмин; в миллилитрах в минуту).

В соответствии с законами гидродинамики количество крови, протекающей через поперечное сечение сосуда в единицу времени (мл/мин), прямо пропорциональна разности давления в начале сосудистой системы- в аорте и в её конце, т.е. в полых венах, и обратно пропорциональна сопротивлению току жидкости (общего периферического сопротивления сосудов)

В связи с замкнутостью кровеносной системы объёмная скорость кровотока во всех её отделах (во всех артериях, всех капиллярах, всех венах) одинакова. Зная объёмную скорость кровотока, можно рассчитать линейную скорость.

 Линейная скорость кровотока отражает скорость продвижения частиц крови вдоль сосудов.     Выражается в см/с.(в см в 1сек)

В отличии от объёмной, линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки.

В центре сосуда линейная скорость максимальна, а около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.

Самое узкое место в сосудистой системе- это аорта, поэтому она имеет самую большую линейную скорость кровотока-50-60см/с. Наибольшее расширение русла отмечается в капиллярной сети, здесь самая маленькая линейная скорость кровотока -0,5мм/с.

Помимо объёмной и линейной скорости кровотока, существует ещё один гемодинамический показатель-время круговорота крови— это время, в течение которого частица крови пройдёт и большой и малый круг кровообращения, оно составляет 20-25с; при тяжёлой работе снижается до 8-10сек.

Вопрос 94. Особенности кровотока в артериях.

Кровь движется по кровеносным сосудам благодаря периодическим сокращениям сердца. Сердце и сосуды составляют сердечно-сосудистую систему, которая делится на: 

 -кровеносную систему, которая включает:

  1. Сердце
  2. Артерии
  3. 3)сосуды микроциркулярного русла (артериолы, прекапилярные артериолы, капилляры, посткапиллярные венулы, венулы, артериоло-венозные анастомозы).
  4. Вены.
  5. -лимфатическую систему, которая включает:
  6. Лимфатические сосуды
  7. Лимфатические капилляры
  8. Протоки
  9. Лимфатические узлы
  10. Лимфатические стволы.
  11. Линейная и объемная скорость кровотока: что это такое, от чего она зависит
  12. Линейная и объемная скорость кровотока: что это такое, от чего она зависит
  13. Линейная и объемная скорость кровотока: что это такое, от чего она зависит
  14. Амортизирующие сосуды обладают очень малым сопротивлением кровотоку.
  15. 2)резистивные (сосуды сопротивления);

 Эти сосуды оказывают наибольшее сопротивлении кровотоку, так как наряду с малым диаметром имеют стенки, содержащие толстый слой гладкомышечных волокон. Гладкомышечные волокна под влиянием нервных и гуморальных факторов могут сокращаться и резко уменьшать кровоток в органах.

К резистивным органам относятся прекапиллярные (средние и мелкие артерии, артериолы, прекапиллярные сфинктеры) и посткапиллярные (венулы) сосуды. Основное сопротивление току крови возникает в артериолах.

3)обменные (истинные сосуды);

К ним относят капилляры, через тонкие стенки которых происходит обмен между кровью и тканями. Стенки капилляров состоят из одного слоя эндотелиальных клеток и базальной мембраны. В капиллярах нет мышечных волокон, которые бы могли изменить их диаметр и сопротивление кровотоку.

Поэтому просвет капилляров, их кровенаполнение и скорость кровотока изменяются пассивно за счёт перепадов давления крови в артериальном и венозном русле и изменений сопротивления граничащих с капиллярами артериол и венул, которые могут изменять свой просвет за счёт сокращения гладкомышечных волокон.

4)ёмкостные;

К ним относятся вены. Благодаря высокой растяжимости вены могут вмещать большой объём крови и таким образом обеспечивать её своеобразное депонирование -замедление перехода к предсердиям.

Особенно выраженными депонирующими свойствами обладают вены селезёнки, печени, кожи и лёгких. Поперечный просвет вен в условиях низкого кровяного давления имеет овальную форму.

Поэтому при увеличении притока крови вены, даже не растягиваются, а лишь принимают более округлую форму, могут вмещать больше крови.

Линейная и объемная скорость кровотока: что это такое, от чего она зависит   При открытии анастомозов основное количество крови идёт через эти участки сосудистого русла с малым сопротивлением, а кровоток через капилляры уменьшается. Суммарный же кровоток через эту область может увеличиваться. Особенно много шунтирующих сосудов в коже.

Линейная и объемная скорость кровотока: что это такое, от чего она зависит

 1) Кровь течёт от области высокого давления к области низкого давления( самое высокое давление в аорте, низкое в полых венах-0мм рт.ст).

Линейная и объемная скорость кровотока: что это такое, от чего она зависит

артериолах и прекапиллярах. Сопротивление сосудов зависит от длины сосуда, вязкости крови и радиуса сосуда.

2)Давление и скорость кровотока в системе кровообращения уменьшаются от аорты до венул, а кровеносные сосуды становятся более мелкими и многочисленными.

В капиллярах скорость кровотока замедляется наиболее выражено, что благоприятствует отдаче кровью веществ тканям.

Для венозного отдела характерны низкий уровень давления и более медленная по сравнению с артериальным руслом скорость кровотока.

3)Внутрисосудистое давление от аорты до полых вен резко снижается, а объём крови в венозном русле, наоборот, возрастает. Следовательно, артериальное русло характеризуется высоким давлением и сравнительно небольшим объёмом крови, а венозное -большим объёмом крови и низким давлением.

  • Считается, что в венозном русле содержится 75-80% крови, а в артериальном-15-17% и в капиллярном -около 5%.
  •  4)По артериям большого круга кровообращения течёт артериальная кровь, по артериям малого круга- венозная (так, как лёгочная артерия несёт кровь , которая уже прошла по сосудам большого круга кровообращения, отдала содержащийся в ней кислород и собрала углекислый газ, от которого нужно избавится в лёгких);
  • 5)По венам большого круга кровообращения течёт венозная кровь, а по венам малого круга – артериальная (выходя из лёгких, лёгочные вены насыщены кислородом);
  • Таким образом, малый круг кровообращения принципиально отличается от большого круга направлением движения насыщенной кислородом крови.

5)Единственным местом где происходит смешивание артериальной и венозной крови является печень. Однако это имеет глубокий физиологический смысл. С одной стороны, печень получает свежую артериальную кровь по печёночной артерии, т.е.

клетки полностью обеспечиваются необходимым количеством кислорода. С другой, в печень входит воротная вена , которая несёт с собой питательные вещества, всасывающиеся в кишечнике.

Вся кровь, оттекающая от кишечника, проходит через печень-главный орган защиты от разного рода токсинов и опасных веществ, которые могли всосаться в пищеварительном тракте.

6)Сопротивление току крови в сосудах малого круга кровообращения примерно в 10 раз меньше, чем в сосудах большого круга кровообращения. Это обусловлено в значительной мере широким диаметром лёгочных артериол. Кровоток в лёгочных сосудах обеспечивается при среднем давлении 13-15 мм рт.ст.

, в то время как в большом круге кровообращения среднее давление составляет 80-100мм рт.ст. Следовательно, левому желудочку для изгнания СОК необходимо затрачивать приблизельно в семь раз большую работу, чем правому.

Этот факт и обусловливает развитие большей мышечной массы левого желудочка по отношению к правому.

В зависимости от диаметра артерии подразделяют на:  крупные (по диаметру)- аорта, средние –артерии,  мелкие -артериолы.

В зависимости от того, какой тип ткани преобладает в стенке артерии различают: артерии эластического,  мышечного и смешанного типа(сонная артерия).

Аорта, лёгочная артерияи все исходящие от них крупные артерии являются  амортизирующими сосудами эластического типа.  За счёт эластических свойств этих сосудов создаётся непрерывный кровоток, как во время систолы, так и диастолы. Кровь в эти сосуды изгоняется желудочками под относительно высоким давлением.

Амортизирующие сосуды растягиваются, принимая кровь, выбрасываемую под давлением из желудочков. Это смягчает гидродинамический удар выбрасываемой крови и обеспечивает создание запасов потенциальной энергии, которая расходуется на поддержание артериального давления во время диастолы желудочков сердца.

Амортизирующие сосуды обладают очень малым сопротивлением кровотоку.

В связи с тем, что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объёмная скорости меняются: они максимальны в аорте и лёгочной артерии в момент систолы желудочков и уменьшаются во время диастолы.

Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего тока крови в постоянный.

Это важное свойство сосудистой стенки обусловливает сглаживание резких колебаний давления, что способствует бесперебойному кровоснабжению органов и тканей.

 Объёмная скорость кровотока (Q)- это объём крови протекающей через всю кровеностную систему за 1 минуту.  (млмин; в миллилитрах в минуту).

Линейная скорость кровотока отражает скорость продвижения частиц крови за единицу времени. Выражается в см/с.

Наибольшее сопротивление кровотоку возникает в артериолах, их ещё называют сосудами сопротивления, или резистивными сосудами. Они являются артериями мышечного типа. Артериолы представляют собой тонкие сосуды (диаметром 15-70мкм).

Стенка этих сосудов содержит толстый слой гладкомышечных волокон, при сокращении которых просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол. Изменение сопротивления артериол меняет уровень давления крови в артериях.

При уменьшении просвета артериол АД в артериях увеличивается, при увеличении —падает. Кроме этого артериолы являются «кранами сердечно-сосудистой системы». Сопротивление резистивных сосудов облегчает растяжение крупных артерий, поэтому кровь, выбрасываемая сердцем во время систолы, не успевает перейти в мелкие кровеносные сосуды.

В результате этого создаётся временный избыток крови в крупных артериальных сосудах. Открытие этих кранов увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой системы.

  1. Таким образом, артериолы выполняют двойную роль:
  2. 1)участвуют в поддержании необходимого организму уровня общего артериального давления;
  3. 2)участвуют в регуляции величины местного кровотока через тот или иной орган или ткань.
  4. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.

В работающем органе тонус артериол уменьшается, что обеспечивает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается.

Суммарная величина общего периферического сопротивления и общий уровень артериального давления остаются примерно постоянными, несмотря на непрерывное перераспределение крови между работающими и неработающими органами.

Источник: https://studopedia.net/13_56766_vopros—ob-emnaya-i-lineynaya-skorost-krovotoka-vremya-krugooborota-.html

Линейная и объемная скорости кровотока

  • Объемной скоростью ( ) называют объем жидкости, протекающий в единицу времени: [мл/с; л/мин и др.]
  • Линейная скорость ( ) представляет собой путь ( ), проходимый частицами в единицу времени:
  • Линейная и объемная скорости связаны соотношением:
  1. Для сплошного течения несжимаемой жидкости выполняется условие неразрывности струи: через любое сечение струи в единицу времени протекают одинаковые объемы жидкости:
  2. Линейная и объемная скорость кровотока: что это такое, от чего она зависитзакон сохранения массы
  3. В гемодинамике принята следующая формулировка этого закона:
  4. в любом сечении сердечно-сосудистой системы объемная скорость кровотока одинакова.
  5. Любое сечение сердечно сосудистой системы представляет собой поперечный разрез всех кровеносных сосудов одного уровня ветвления.
  6. Например, в большом круге кровообращения:
  7. · первое сечение проходит через аорту,
  8. · второе сечение проходит через все артерии,
  9. · третье сечение проходит через все ветви артерий,
  10. · четвертое сечение проходит через все капилляры,
  11. · пятое сечений – это сумма площадей верхней и нижней полых вен.

Самым узким сечением обладает аорта (S≈4 см2). Самое обширное сечение приходится на уровень капилляров (S≈11000 см2 ), из которых лишь через 3000 см2 течет кровь, а остальные капилляры находятся в спавшем состоянии.

Следовательно, площадь суммарного просвета капилляров, в которых есть кровоток, в 600-800 раз больше поперечного сечения аорты.

С учетом условия неразрывности струи это означает, что линейная скорость кровотока в капиллярной сети в 600-800 раз меньше.

Наиболее быстро движется кровь в аорте, здесь скорость течения ее 0,5 м/с, а наиболее медленно — в капиллярах — 0,5 мм/с. В венах скорость течения увеличивается и в крупных венах составляет 0,25 м/с.

Представим схему соотношения между суммарным сечением каждой генерации сосудов ( ) и линейной скоростью кровотока ( ).

При движении крови нужно учитывать взаимодействие между кровяным потоком и стенками кровеносных сосудов, учитывая влияние окружающих тканей, геометрию сосудов и реологию их стенок.

При исследовании течения крови нужно учитывать (сравнивать) размеры эритроцитов и диаметр кровеносного сосуда.

В больших сосудах (диаметр 0,1-1см) наибольший размер эритроцитов (диаметр 8·10-4 см) пренебрежительно мал, что позволяет рассматривать кровь как однородную жидкость. При движении крови в узких сосудах нужно учитывать дисперсионный характер крови.

  • Благодаря силам сцепления между молекулами крови и внутренними стенками артерии вблизи них течение крови отсутствует, кровь течёт быстрее в центре артерии:
  • Линейная скорость тока крови определяется по формуле:
  • где, – расстояние от центра трубки, на котором определяется скорость.
  • Скорости текущей крови распределены по параболе.

Низкая скорость течения около стенки означает, что давление крови здесь высокое. В центре артерии, там где скорость максимальна, давление – минимальное.

Таким образом, давление возрастает с удалением от центра артерии. Поэтому любой форменный элемент крови будет испытывать радиальную разность давлений.

Эта разность создаёт силу, которая толкает клетку к центру артерии и они концентрируются в центральной части артерии.

Дата добавления: 2018-12-03; просмотров: 376;

Источник: https://znatock.org/s10849t1.html

Основные показатели гемодинамики. Взаимоотношение между давлением крови, скоростью кровотока и сопротивлением току крови. Объёмная и линейная скорость кровотока. Условия неразрывности струи

Гемодинамика – это закономерности движения крови по сосудистой системе. Движение крови в последовательно соединенных сосудах, обеспечивающее ее кругооборот называют системной гемодинамикой.

  • Движение крови в параллельно подключенных к аорте и полым венам сосудистых руслах, благодаря которому органы получают необходимый объем крови, называют регионарной (органной) гемодинамикой.
  • В соответствии с законами гидродинамики движение крови определяется двумя силами:
  • — Разностью давлений в начале и конце сосуда, что способствует продвижению жидкости (крови) по сосуду.
  • — Гидравлическим сопротивлением, которое препятствует току жидкости.
  • Отношение разности давления к сопротивлению определяет объемную скорость тока жидкости и выражается уравнением: Q = (P1-P2)/R.
  • Отсюда следует, что количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давлений в ее артериальном и венозном концах и чем меньше сопротивление току крови.

Давление в сосудистой системе создается работой сердца, которое выбрасывает определенный объем крови в единицу времени. Поэтому в артериях давление максимальное.

Так как давление в месте впадения полых вен в сердце близко к 0, то уравнение гидродинамики относительно системного кровотока можно записать в виде: Q = P/R, или Р = Q.R, т.е. давление в устье аорты прямо пропорционально минутному объему крови и величине периферического сопротивления.

Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда.

Любой из таких сосудов можно сравнить с трубкой, сопротивление которой определяется по формуле: R = 8ln/pr4, т.е.

сопротивление сосуда прямо пропорционально его длине и вязкости, протекающей в нем жидкости (крови) и обратно пропорционально радиусу трубки (p — отношение окружности к диаметру).

Отсюда следует, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого самый маленький. Однако огромное количество капилляров включено в ток крови параллельно, поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.

Пульсирующий ток крови, создаваемый работой сердца, выравнивается в кровеносных сосудах, благодаря их эластичности, поэтому ток крови носит непрерывный характер. Для выравнивания пульсирующего тока крови большое значение имеют упругие свойства аорты и крупных артерий.

  1. Во время систолы часть кинетической энергии, сообщенной сердцем крови, переходит в кинетическую энергию движущейся крови, другая ее часть переходит в потенциальную энергию растянутой стенки аорты.
  2. Потенциальная энергия, накопленная стенкой сосуда во время систолы, переходит при его спадении в кинетическую энергию движущейся крови во время диастолы, создавая непрерывный кровоток.
  3. Основными гемодинамическими показателями движения крови по сосудам являются объемная скорость, линейная скорость и скорость кругооборота.

Объемная скорость определяется количеством крови, проходящей через поперечное сечение сосуда за единицу времени. Так как отток крови от сердца соответствует ее притоку к сердцу, то объем крови, протекающий за единицу времени через суммарное поперечное сечение сосудов любого участка кровеносной систем, одинаков.

Объемную скорость кровотока отражает минутный объем кровообращения — то количество крови, которое выбрасывается сердцем за 1 минуту.

Минутный объем кровообращения в покое составляет 4,5-5 л и является интегративным показателем.

Он зависит от систолического объема (то количество крови, которое выбрасывается сердцем за одну систолу, от 40 до 70 мл) и от частоты сердечных сокращений (70-80 в минуту).

Линейная скорость кровотока – это расстояние, которое проходит частица крови за единицу времени, т.е. это скорость перемещения частиц вдоль сосуда при ламинарном потоке. Кровоток в сосудистой системе в основном носит ламинарный (слоистый) характер.

При этом кровь движется отдельными слоями параллельно оси сосуда. Линейная скорость различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре она максимальная, а около стенки – минимальная.

Это связано с тем, что на периферии особенно велико трение частиц крови о стенку сосуда.

При переходе одного калибра сосуда к другому диаметр сосуда меняется, что приводит к изменению скорости течения крови и возникновению турбулентных (вихревых) движений.

Переход от ламинарного типа движения к турбулентному ведет к значительному росту сопротивления.

Линейная скорость также различна для отдельных участков сосудистой системы и зависит от суммарного поперечного сечения сосудов данного калибра. Она прямо пропорциональна объемной скорости кровотока и обратно пропорциональна площади сечения кровеносных сосудов: V = Q/pr2.

Поэтому линейная скорость меняется по ходу сосудистой системы. Так, в аорте она равна 50-40 см/c; в артериях – 40-20; артериолах – 10-0,1; капиллярах – 0,05; венулах – 0,3; венах – 0,3-5,0; в полых венах – 10-20 см/с.

В венах линейная скорость кровотока возрастает, так как при слиянии вен друг с другом суммарный просвет кровеносного русла суживается.

Скорость кругооборота крови характеризуется временем, в течение которого частица крови пройдет большой и малый круги кровообращения. В среднем, это происходит за 20-25 с.

Условие неразрывности струи: при стационарном течении несжимаемой жидкости через любые сечения трубки тока каждую секунду протекают одинаковые объемы жидкости, равные произведению площади сечения на среднюю скорость движения ее частиц.

Условие неразрывности струи: если при течении жидкости линии непрерывны-ламинарное течение. В движущейся жидкости могут возникать завихрения, скорость частиц изменяется, линии претерпевают разрывы, изменяющиеся со временем — турбулентное движения. Уравнение Бернулли: pv2/2+P+pgh=const.

3. Температура тела («ядра» и «оболочки») человека. Уравнение теплового баланса гомойотермного организма. Химическая и физическая терморегуляция (механизмы теплообразования и теплообмена).

Все живые организмы делятся на: гомойотермные — теплокровные (человек и млекопитающие) и пойкилотермные – холоднокровные.


Образующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.

Теплопродукция и теплоотдача.
Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.

Суммарная теплопродукция в организме состоит из:
«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях
«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы.

  • Уровень теплообразования в организме зависит от:
  • -величины основного обмена, специфического динамического действия принимаемой пищи
  • -мышечной активности
  • -интенсивности метаболизма.

Наибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении — «сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.

У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и, прежде всего, высокой скорости окисления жирных кислот — «несократительный термогенез». Увеличивает уровень теплопродукции (~ 3 раза) по сравнению с уровнем основного обмена.

Механизмы теплоотдачи:


Излучение — способ отдачи тепла в окружающую среду поверхностью тела человек в виде электромагнитных волн инфракрасного диапазона. Количество рассеиваемого тепла прямопропорционально площади поверхности излучения и разности температур кожи и окружающей среды.
При понижении температуры окружающей среды излучение увеличивается, при повышении температуры — понижается.

Теплопроведение — способ отдачи тепла при соприкосновении тела человека с другими физическими телами.

Количество отдаваемого при этом тепла прямопропорционально: разнице средних температур контактирующих тел,лощади контактирующих поверхностей, времени теплового контакта, теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуется низкой теплопроводностью.


Конвекция — способ теплопередачи, осуществляемый путем переноса тепла движущимися частицами воздуха (или воды). Для конвенции требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Количество отдаваемого конвекцией тепла увеличивается при увеличении скорости движения воздуха (ветер, вентиляция).


Излучение, теплопроведение и конвекция становятся неэффективными способами теплоотдачи при выравнивании средних температур поверхности тела и окружающей среды.

-
Испарение — способ рассеивания организмом тепла в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота в окружающую среду за счет его затрат на испарение пота или влаги с поверхности кожи или влаги со слизистых дыхательных путей.


У человека постоянно идет потоотделение потовыми железами кожи (36 гр/час при 20 0С) увлажнение слизистых дыхательных путей. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде (костюм — «сауна») усиливает потоотделение (до 50 — 200 гр/час).

Испарение (единственный из способов теплоотдачи) возможно при выравнивании температур кожи и окружающей среды при влажности воздуха менее 100 процентов.

Температура тела человека.
В тех органах и тканях, где обменные процессы протекают с большой скоростью, образуется большое количество тепла.


Решающую роль в перераспределении тепла между тканями с различной теплопродукцией и предупреждении перегревания играет кровь. Обладая высокой теплоемкостью, кровь содействует выравниванию температур в различных частях тела.

Подобным образом, за счет изменения скорости кровотока, осуществляется согревание или охлаждение поверхности тела.

Температура поверхностных тканей ниже, чем температура более глубоких тканей, где она составляет 36,7 — 37,0 0С и ее суточные колебания не превышают 1 0С. Это — «гомойотермное ядро«, т.е. ткани, расположенные на глубине 1 см от поверхности тела и глубже.

На поверхности же тела суточные колебания температуры больше и она различна на разных участках — «пойкилотермная оболочка» тела человека.
Относительное постоянство температуры сохраняется в большей массе глубоких тканей («ядро»), если организм находится в среде с температурой 25 — 26 0С — «термонейтральная зона» или » температура комфорта».


При снижении температуры окружающей среды масса глубоких тканей с постоянной температурой («ядра») уменьшается, при повышении — возрастает.

В течении суток максимальное значение температуры тела наблюдается в 18-20 часов, минимальное — к 4-6 часам утра.

Терморегуляция — это совокупность физиологических и психофизиологических механизмов и процессов, направленных на поддержание относительно постоянства температуры тела. Это достигается с помощью баланса между количеством тепла, рассеиваемого организмом за то же время в окружающую среду.
Восприятие температурных раздражений осуществляется:

  1. — холодовыми рецепторами — количественно расположены больше на поверхности тела, повышает частоту импульсации в ответ на охлаждение и снижают ее в ответ на нагревание.
  2. — тепловыми рецепторами — количественно расположены больше в гипаталамусе, действуют противоположным, чем холодовые рецепторы, образом.
  3. Билет 47



Источник: https://infopedia.su/12x40b1.html

Определение скорости кровотока

Скорость кровотока, наряду с давлением крови, является основной физической величиной, характеризующей состояние системы кровообращения.

Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (V-лин) это расстояние, которое, проходит частица крови в единицу времени. Она зависит от суммарной площади перечного сечения всех сосудов, образующих участок сосудистого русла.

Поэтому в кровеносной системе наиболее широким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек.

Суммарный просвет капиллярного русла в 500-600 раз меньше чем аорты, поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен.

В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0.2 м/сек. Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помешают датчик с источником и приемником ультразвука. В движущейся среде — крови частота ультразвуковых колебаний изменяется.

Чем больше скорость течения крови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.

Объемная скорость кровотока (объём.) это количество крови проходящей через поперечное сечение сосуда за единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови.

В клинике объемный кровоток оценивают с помощью реовазографии. Этот метод основан на регистрации колебаний электрического сопротивления органов для тока высокой частоты, при изменении их кровенаполнения в систолу и диастолу.

При увеличении кровенаполнения сопротивление понижается, а уменьшении возрастает. С целью диагностики сосудистых заболеваний производят реовазографию конечностей, печени, почек, грудной клетки. Иногда используют плетизмографию.

Это регистрация колебаний объема органа, возникающих при изменении их кровенаполнения. Колебания объема регистрируют с помощью водных, воздушных и электрических плетизмографов.

Скорость кругооборота крови, это время, за которое частица крови проходит оба круга кровообращения. Ее измеряют путем введения красителя флюоресцина в вену одной руки для определения времени его появления в вене другой. В среднем скорость кругооборота крови составляет 20-25 сек.

Допплерография – это способ изучения кровотока в крупных и средних сосудах человека, основанный на применении эффекта Допплера. У пациентов метод используется для уточнения характера и степени нарушения кровообращения в любых не очень мелких сосудах. Данное обследование применяется при беременности — для оценки работы плаценты и артерий матки.

Для получения информации о скорости и характере кровотока, давлении, направлении движения крови в сосуде и степени его проходимости используется такой же ультразвук, как при проведении «обычного» УЗИ. Только испускает его и принимает обратно особый датчик, работающий на основе допплеровского эффекта.

Данное физическое явление заключается в том, что частота отраженного от движущихся объектов (клеток крови) ультразвука сильно изменяется по сравнению с частотой испускаемого датчиком ультразвука. Прибор регистрирует не саму частоту колебаний, а разницу между начальной и отраженной частотой.

Причем обработка сигналов не только позволяет вычислить эту скорость, но и увидеть направление кровотока (от датчика или к нему), оценить анатомию и проходимость сосуда.

Показания к исследованиюультразвуковой допплерографии (УЗДГ)

УЗДГ сосудов нижних конечностей назначается, если имеются такие жалобы: видны измененные вены на ногах. Ноги (ступни и голени) отекают к вечеру изменился цвет одной или двух ног больно ходить, после стояния становится легче ощущения «мурашек» ноги быстро замерзают плохо заживают раны на ногах.

Допплер плода проводится в таких случаях: мать страдает сахарным диабетом, гипертонией, анемией, размеры ребенка не соответствуют его возрасту мать имеет отрицательный резус, ребенок – положительный развивается несколько плодов , обвитие шеи младенца пуповиной . Такая УЗДГ при беременности (то есть ультразвуковая допплерография) позволяет с 23 недели узнать, страдает ли малыш от недостатка кислорода.

Допплерография – это метод исследования не только вышеуказанных сосудов, но и сосудов грудного и брюшного отделов аорты и их ветвей, головы, шеи, артерий и вен верхней конечности.

Цветовое допплеровское картирование (ЦДК) – это один из подвидов УЗИ, основанный на эффекте Допплера. Оно также «работает» с оценкой кровотока в сосудах. В основе данного исследования – совмещение обычного черно-белого УЗИ и допплеровской оценки кровотока.

В режиме ЦДК врач видит на мониторе черно-белое изображение, в определенной (исследуемой) части которого отображаются в цвете данные скорости движения структур.

Так, оттенки красного цвета будут кодировать скорость течения крови, направленного к датчику (чем светлее, тем меньше скорость), оттенки голубого цвета – скорость кровотока, направленного от датчика. Рядом выводится шкала, на которой обозначено, какой именно скорости соответствует тот или иной оттенок.

То есть, синим цветом обозначены не вены, а красным – не артерии. Цветовое допплеровское картирование визуализирует и анализирует: направление, характер, скорость кровотока; проходимость, сопротивление, диаметр сосуда.

Диагностирует: степень утолщения сосудистой стенки пристеночные тромбы или атеросклеротические бляшки (может их отличить) патологическую извитость сосуда аневризму сосуда.

Это исследование помогает не только обнаружить конкретно сосудистую патологию.

На основании полученных в результате данных можно отличить доброкачественный процесс от злокачественного, выяснить склонность опухоли к росту, отличить некоторые образования.

Допплеровское картирование, проведенное по отношению к сосудам брюшной полости, помогает в диагностике тех болей в брюшной полости, которые возникают из-за недостаточного кровоснабжение кишечника (другим методом эту патологию не определить).

Реовазография или РВГ – современный метод функциональной диагностики, с помощью которого определяется интенсивность и объем кровотока в артериальных сосудах конечностей.

Принцип метода данного исследования заключается в измерении сопротивления участка кожи при пропускании через него электрического тока минимальной силы (абсолютно безвредной), напряжения и определенной частоты с помощью специальных датчиков.

В зависимости от интенсивности кровенаполнения тканей, изменяется их сопротивление. Чем хуже кровоток, тем выше сопротивление кожи и тканей.

Изменения параметра сопротивления выводятся на бумажную ленту в виде кривой линии, по которой врач функциональной диагностики определяет характер кровотока в исследуемом участке тела.

Основным показанием для проведения такого функционального исследования является диагностика сосудов при таких их заболеваниях:

  • Атеросклероз артерий ног – патология, при которой на их стенках формируются атеросклеротические бляшки, которые уменьшают просвет сосудов и ухудшают кровоснабжение нижних конечностей.
  • Тромбофлебит – воспаление вен ног, при котором в них формируются тромбы.
  • Эндартериит – воспаление внутренней стенки артерий рук или ног.
  • Варикозное расширение вен – патология, при которой чаще поражаются поверхностные и глубокие вены ног с нарушением нормального оттока крови по ним.

Реовазография является несложной и не длительной процедурой. Человек во время ее проведения располагается на спине, на кушетке. Врач функциональной диагностики прикрепляет (обычно с помощью присосок) датчики к коже исследуемой области рук или ног. Сама процедура длится около 10-15 минут. Перед ее проведением необходимо выполнить несколько несложных подготовительных рекомендаций:

  • Предварительный отдых для полного расслабления мышц и нормализации кровотока в них (за 15-20 минут до начала обследования).
  • За несколько суток (минимум 24 часа) необходимо прекратить прием лекартсвенных средств, влияющих на уровень артериального давления и состояние сосудов.
  • Необходимо исключить прием алкоголя за несколько суток до обследования.
  • Курящим людям, в течение нескольких часов необходимо воздержаться от курения.
  • В день проведения реовазографии желательно постараться избегать выраженных физических или эмоциональных нагрузок.

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s44340t9.html

Структурно-функциональная организация кровеносной системы. Функциональная роль амортизирующих, резистивных, обменных и емкостных сосудов

Подробности

Различные участки кровеносного русла имеют различные характеристики. Это позволяет участкам сосудистого русла выполнять функции амортизирующих, резистивных, обменных и емкостных сосудов.

Объемная скорость кровотока

Объемная скорость кровотока (Q)— это количество крови, которое проходит через определенное суммарное сечение сосудов в единицу времени (обычно за одну минуту). Суммарный просвет сосудов постепенно увеличивается, включая капилляры, где он максимальный, а затем постепенно уменьшается. Однако, в полых венах он в 1,5-2 раза больше, чем в аорте.

Объемную скорость можно определить по формуле:

Q = (P1-P2) / W.

Иначе, объемная скорость (Q) равняется разности давлений крови в начальной и конечной части сосудистой системы (P1-P2), поделенной на сопротивление этого отдела сосудистой системы (W).

Отсюда, чем больше разность давлений крови, и чем меньше сопротивление, тем больше объемная скорость. Однако, эту формулу для определения объемной скорости можно использовать только теоретически.

Объемная скорость во всех суммарных сечениях сосудов одинакова и составляет у взрослого и здорового человека в состоянии покоя в среднем 4-5 литров крови за минуту.

Однако, это совсем не означает, что в различных участках одного сечения она одинакова, то есть в одном участке этого сечения она увеличивается (площадь поперечного сечения здесь соответственно уменьшается), то в других она соответственно уменьшается (следовательно, площадь поперечного сечения здесь возрастает). На этом основано перераспределение кровообращения в зависимости от функциональной нагрузки. Объемную скорость кровообращения за 1 минуту иначе можно назвать минутным объемом кровообращения (МОК). При физическом напряжении минутный объем кровообращения (МОК) увеличивается и может доходить до 30 литров крови. Если учесть, что объемная скорость и МОК — одна и та же величина, то практически для ее определения можно использовать все методы, которые применяются для оценки МОК, а именно методы Фика, индикаторный, Грольмана и др., о которых шла речь в подразделе “Физиология сердца”.

Линейная скорость кровотока

Линейная скорость кровотока (V) оценивается расстоянием, которое проходит частица крови в единицу времени (секунда). Ее легко можно вычислить по формуле:

V = Q / P*r2

где Q — объемная скорость, (P*r2) — сечение сосуда (имеется в виду суммарный просвет сосудов соответствующего калибра). Как следует из формулы, линейная скорость находится в прямой зависимости от объемной скорости, и обратной зависимости — от сечения сосудов.

Отсюда следует, что линейная скорость должна быть различной в разных сечениях сосудов. Так в состоянии покоя линейная скорость в аорте составляет 400-600 мм/с, в артериях среднего калибра — 200-300 мм/с, в артериолах — 8-10 мм/с, в капиллярах — 0,3-0,5 мм/с. Затем по ходу венозного кровотока линейная скорость постепенно возрастает, т. к.

суммарный просвет сосудов уменьшается и в полых венах она доходит до 150-200 мм/с.

Естественно, что линейная скорость частиц крови, находящихся ближе к стенке сосудов, меньше, чем тех частиц, которые находятся в центре столба крови, а также линейная скорость во время систолы желудочков несколько больше, чем во время диастолы.

Кроме того, в начальной части аорты она может уменьшаться или даже быть нулевой, т. к. при падении давления в левом желудочке, кровь естественно устремляется по направлению к сердечной мышце в силу разности давлений.

При физической нагрузке линейная скорость увеличивается во всех сечениях сосудистой системы.

 

Определение Артерии Капилляры Вены
Строение Стенки аорты состоят преимущественно из эластических волокон В состав стенок других артерий входят также и мышечные элементы, что делает возможным процесс нейрогуморальной регуляции их просвета Стенка капилляра представляет собой слой эндотелиальных клеток, расположенных на базальной мембране – В венах имеются клапаны – В стенках вен присутствуют как эластические, так и мышечные волокна
Функция Часть энергии систолы передается на стенки этих сосудов. Под давлением крови стенки растягиваются и за счет сокращений проталкивают кровь дальше по направлению к периферии Объем кровотока в тканях корригируется «по потребности». Просвет артериальных сосудов может меняться, что, несомненно, сказывается на системном артериальном давлении Питательные вещества и кислород диффундируют в ткани, а продукты клеточного метаболизма, в том числе и углекислый газ в кровеносное русло – Обеспечивают ток крови только в одном направлении – Регулируют объем циркулирующей крови

 

Аорта и крупные артерии Амортизирующие (проводящие, распределительные) сосуды
Мелкие артерии и артериолы Сосуды сопротивления (резистивные сосуды), регулируют кровоснабжение тканей и уровень артериального давления
Капилляры Обменные сосуды
Венулы и вены Ёмкостные сосуды

Источник: http://fundamed.ru/nphys/132-strukturno-funktsionalnaya-organizatsiya-krovenosnoj-sistemy-funktsionalnaya-rol-amortiziruyushchikh-rezistivnykh-obmennykh-i-emkostnykh-sosudov.html

Сп минимакс

Скорость кровотока — это скорость передвижения элементов крови по кровеносному руслу за определенную единицу времени. В практике специалисты выделяют линейную скорость и объемную скорость кровотока.

Один из главных параметров, характеризующий функциональность кровеносной системы организма. Этот показатель зависит от частоты сокращений сердечной мышцы, количества и качественного состава крови, величины сосудов, артериального давления, возраста и генетических особенностей организма.

Типы скорости кровотока

Линейная скорость- расстояние, проходимое частицей крови по сосуду за определенный период времени. Оно напрямую зависит от суммы площадей поперечного сечения сосудов, составляющих данный участок сосудистого русла.

Следовательно, аорта- самый узкий участок кровеносной системы и в ней самая высокая скорость кровотока, достигающая 0,6 м/с. Самым «широким» местом являются капилляры, т. к. их общая площадь в 500 раз больше площади аорты, скорость кровотока в них 0,5 мм/с. , что обеспечивает прекрасный обмен веществ между капиллярной стенкой и тканями.

Объемная скорость кровотока — общее количество крови поступающей через поперечное сечение сосуда за определенный промежуток времени.

Данный вид скорости определяется:

  • разностью давления на противоположных концах сосуда ,которая формируется артериальным и венозным давлением;
  • сопротивлением сосудов току крови, зависящим от диаметра сосуда, его длины, вязкости крови.

Важность и острота проблемы

Определение такого важного параметра , как скорость кровотока крайне важно для исследования гемодинамики конкретного участка сосудистого русла либо определенного органа. При изменении его можно говорить о наличие патологических сужении на протяжении сосуда, препятствий току крови (пристеночные тромбы, атеросклеротические бляшки),повышенной вязкости крови.

В настоящее время неинвазивная, объективная оценка кровотока по сосудам разного калибра является самой актуальной задачей современной ангиологии. От успеха в ее решении зависит успех ранней диагностики таких сосудистых заболеваний, как диабетическая микроангиопатия, синдром Рейно, различных окклюзий и стенозов сосудов.

Перспективный помощник

Самым перспективным и безопасным является определение скорости кровотока УЗ-методом, построенным на эффекте Доплера.

Одним из последних представителей УЗ доплеровских аппаратов является Допплер- аппарат, выпускаемый компанией Минимакс ,зарекомендовавший себя на рынке как надежный, качественный и долгосрочный помощник в определении сосудистой патологии.

Как происходит измерение скорости кровотока в сосудах?

Измерение скорости кровотока в сосудах производится с применением различных методик.

Одной из самых точных и достоверных результатов даёт измерение, произведённое с помощью метода ультразвуковой доплеровской флоуметрии аппаратом Минимакс-Допплер.

Данные, полученные при использовании оборудования Минимакс, являются основой для оценки состояния обследуемого и учитывается при определении диагноза.

Для чего проводят измерение скорости движения крови?

Измерение скорости кровотока имеет важно для диагностической медицины. Благодаря анализу данных, полученных в результате измерений можно определить:

  • состояние сосудов, показатель вязкости крови;
  • уровень снабжения кровью мозга и других органов;
  • сопротивление движению в обоих кругах кровообращения;
  • уровень микроциркуляции;
  • состояние коронарных сосудов;
  • степень сердечной недостаточности.

Скорость кровотока в сосудах, артериях и капиллярах не является постоянной и одинаковой величиной: самая большая скорость — в аорте, самая маленькая — внутри микрокапилляров.

Для чего проводят измерение скорости кровотока в сосудах ногтевого ложа?

Скорость кровотока в сосудах ногтевого ложа — один из наглядных показателей качества микроциркуляции крови в организме человека. Сосуды ногтевого ложа имеют малое поперечное сечение и состоят не только из капилляров, а также из микроскопических артериол.

При проблемах, связанных с кровеносной системой, эти капилляры и артериолы страдают первыми. Конечно, судить о состоянии всей системы только лишь на основании исследования кровообращения в области ногтевого ложа нельзя, но стоит обратить внимание, если движение крови в этой области является слишком низким или высоким.

В медицине для получения наиболее достоверных сведений проводят измерения параметров кровообращения на больших участках кровообращения.

Источник: http://minimax.ru/articles/general-information/blood-flow.html

Ссылка на основную публикацию
Adblock
detector